Assessment of a novel, capsid-modified adenovirus with an improved vascular gene transfer profile
نویسندگان
چکیده
BACKGROUND Cardiovascular disorders, including coronary artery bypass graft failure and in-stent restenosis remain significant opportunities for the advancement of novel therapeutics that target neointimal hyperplasia, a characteristic of both pathologies. Gene therapy may provide a successful approach to improve the clinical outcome of these conditions, but would benefit from the development of more efficient vectors for vascular gene delivery. The aim of this study was to assess whether a novel genetically engineered Adenovirus could be utilised to produce enhanced levels of vascular gene expression. METHODS Vascular transduction capacity was assessed in primary human saphenous vein smooth muscle and endothelial cells using vectors expressing the LacZ reporter gene. The therapeutic capacity of the vectors was compared by measuring smooth muscle cell metabolic activity and migration following infection with vectors that over-express the candidate therapeutic gene tissue inhibitor of matrix metalloproteinase-3 (TIMP-3). RESULTS Compared to Adenovirus serotype 5 (Ad5), the novel vector Ad5T*F35++ demonstrated improved binding and transduction of human vascular cells. Ad5T*F35++ mediated expression of TIMP-3 reduced smooth muscle cell metabolic activity and migration in vitro. We also demonstrated that in human serum samples pre-existing neutralising antibodies to Ad5T*F35++ were less prevalent than Ad5 neutralising antibodies. CONCLUSIONS We have developed a novel vector with improved vascular transduction and improved resistance to human serum neutralisation. This may provide a novel vector platform for human vascular gene transfer.
منابع مشابه
A capsid-modified, conditionally replicating oncolytic adenovirus vector expressing TRAIL Leads to enhanced cancer cell killing in human glioblastoma models.
Glioblastoma multiforme (GBM) is the most aggressive brain tumor, and patients rarely survive for more than 2 years. Gene therapy may offer new treatment options and improve the prognosis for patients with GBM. Adenovirus-mediated gene therapy strategies for brain tumors have been limited by inefficient gene transfer due to low expression of the adenovirus serotype 5 (Ad5) receptor. We have use...
متن کاملA novel strategy to modify adenovirus tropism and enhance transgene delivery to activated vascular endothelial cells in vitro and in vivo.
To assess the possibilities of retargeting adenovirus to activated endothelial cells, we conjugated bifunctional polyethylene glycol (PEG) onto the adenoviral capsid to inhibit the interaction between viral knob and coxsackie-adenovirus receptor (CAR). Subsequently, we introduced an alphav integrin-specific RGD peptide or E-selectin-specific antibody to the other functional group of the PEG mol...
متن کاملAntibody-mediated targeting of an adenovirus vector modified to contain a synthetic immunoglobulin g-binding domain in the capsid.
Adenovirus vectors have been targeted to different cell types by genetic modification of the capsid or by using recombinant or chemically engineered adaptor molecules. However, both genetic capsid modifications and bridging adaptors have to be specifically tailored for each particular targeting situation. Here, we present an efficient and versatile strategy allowing the direct use of monoclonal...
متن کاملTranscellular Targeting of Fiber- and Hexon-Modified Adenovirus Vectors across the Brain Microvascular Endothelial Cells In Vitro
In central nervous system (CNS)-directed gene therapy, efficient targeting of brain parenchyma through the vascular route is prevented by the endothelium and the epithelium of the blood-brain and the blood-cerebrospinal fluid barriers, respectively. In this study, we evaluated the feasibility of the combined genetic and chemical adenovirus capsid modification technology to enable transcellular ...
متن کاملA novel capsid-modified oncolytic recombinant adenovirus type 5 for tumor-targeting gene therapy by intravenous route
Oncolytic adenovirus (Ad)-vectored gene therapy is a promising strategy for cancer treatment. However, the lack of cancer cell selectivity or tumor tissue specificity of Ads limits their clinical application by intravenous (IV) injection. In this paper, a novel recombinant Ad5 vector was constructed carrying the capsid protein IX modified by the tumor necrosis factor related apoptosis-inducing ...
متن کامل